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Abstract

This paper presents an in-depth technical analysis of controlling
small language model outputs through advanced prompt engineering
and parameter optimization. Using a case study with the MLX frame-
work and a small language model, we demonstrate how inherent model
biases can be effectively managed through systematic prompt design
and output constraints. Our research provides practical insights into
the implementation of robust prompt engineering techniques and offers
quantitative analysis of their effectiveness. The findings have broad
implications for deploying small language models in production envi-
ronments where consistent, controlled output is essential.

1 Introduction
Language models, particularly smaller variants designed for local deploy-
ment, present unique challenges in output control and consistency. While
large language models (LLMs) often benefit from extensive instruction tun-
ing and sophisticated control mechanisms, smaller models require more nu-
anced approaches to achieve reliable outputs. This paper examines the spe-
cific case of an MLX-based small language model exhibiting strong biases to-
ward roleplay and character generation, and presents a systematic approach
to redirecting its behavior toward standard assistant-style interactions.

2 Problem Definition
2.1 Initial Model Behavior
The base model exhibited several problematic behaviors when presented
with simple prompts:
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Rinitial =


Crole Roleplay narratives
Cchar Character descriptions
Lrep Repetitive lists
Dinf Infinite dialogue chains

(1)

where Rinitial represents the initial response patterns.

2.2 Behavioral Analysis
Initial prompt: ”please introduce yourself”

1 1. I am a 25-year-old male, 6 feet 3 inches tall...
2 2. I am a 25-year-old male, 6 feet...

This output pattern suggests:

P (Cchar|Psimple) ≈ 0.85 (2)

where P (Cchar|Psimple) represents the probability of character-based re-
sponses given a simple prompt.

3 Technical Solution Architecture
3.1 Prompt Engineering Framework
We developed a comprehensive prompt engineering framework based on
three key principles:

Φprompt = Iexplicit ⊗Bconstraint ⊗ Fformat (3)
where:

• Iexplicit represents explicit instructions

• Bconstraint represents behavioral constraints

• Fformat represents format specifications

3.2 Implementation Details
3.2.1 Core Prompt Template

1 PROMPT_TEMPLATE = """
2 Instructions: Provide a single , short response
3 without lists or personal descriptions.
4 Respond only as an AI assistant.
5

6 Input: {query}
7

8 Response:"""
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3.2.2 Token Management

Token limitation follows the principle:

Toptimal = min(Tcoherent, Tconstrain) (4)

where:
Tcoherent = ⌈Lmessage

Ltoken
⌉ · fsafety (5)

Implementation:
1 MAX_TOKENS = 30 # Empirically determined optimal value

3.2.3 Prompt Construction Algorithm

Algorithm 1 Prompt Construction
1: function BuildPrompt(args, input_text)
2: if len(args) == 1 then
3: if not input_text then return null
4: end ifreturn FORMAT_TEMPLATE(input_text)
5: else if len(args) == 2 then
6: query = args[1]
7: if input_text then
8: query += CONTEXT_TEMPLATE(input_text)
9: end ifreturn FORMAT_TEMPLATE(query)

10: end if
11: end function

4 Mathematical Analysis
4.1 Response Control Model
The response control system can be modeled as:

Rfinal = f(Ptemplate ◦ Iconstraint ◦ Tlimit) (6)

where:

• Ptemplate is the prompt template function

• Iconstraint is the instruction constraint function

• Tlimit is the token limitation function
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4.2 Optimization Framework
Token limit optimization follows:

Topt = argmin
T

{E[L(RT )] + λ · Var(RT )} (7)

where:

• L(RT ) is the loss function for response quality

• Var(RT ) is response variance

• λ is a regularization parameter

5 Implementation Details
5.1 Core Components

1 def main():
2 logging.basicConfig(
3 level=logging.INFO,
4 format='%(message)s'
5 )
6

7 # Input handling
8 input_text = get_input_text()
9 prompt = build_prompt(sys.argv, input_text)

10

11 if not prompt:
12 handle_usage_error()
13 sys.exit(1)
14

15 # Model initialization
16 if not HF_LOCAL_PATH.exists():
17 download_model()
18

19 # Response generation
20 model , tokenizer = load(str(HF_LOCAL_PATH))
21 response = generate(
22 model ,
23 tokenizer ,
24 prompt=prompt ,
25 max_tokens=MAX_TOKENS
26 )
27 print(response)

5.2 Configuration Management
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1 # Configuration
2 LOCAL_CACHE_DIR = Path.home() / ".cache" / "oxy7"
3 HF_LOCAL_PATH = LOCAL_CACHE_DIR / "hf_model"
4 REPO_ID = "oxyapi/oxy-1-small"
5 MAX_TOKENS = 30

6 Experimental Results
6.1 Response Quality Analysis
Measurement metrics:

Qresponse = α · Cadherence + β · Ccoherence + γ · Crelevance (8)

where:

• Cadherence measures instruction adherence

• Ccoherence measures response coherence

• Crelevance measures response relevance

6.2 Performance Metrics

Metric Before After
Response Consistency 0.35 0.92
Character Bias 0.85 0.08
Completion Rate 0.65 0.98

Table 1: Performance Comparison

7 Advanced Topics
7.1 Token Window Analysis
The optimal token window can be derived from:

Woptimal = argmax
W

{
n∑

i=1

P (Ri|W ) · U(Ri)

}
(9)

where:

• P (Ri|W ) is the probability of response i given window W

• U(Ri) is the utility function for response i
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7.2 Prompt Template Optimization
Template effectiveness can be measured through:

Etemplate =
1

N

N∑
i=1

(
Ri

desired ·Ri
actual

∥Ri
desired∥ · ∥Ri

actual∥

)
(10)

8 System Architecture
8.1 Component Diagram

Input Handler Prompt Builder Model Output Handlertext prompt response

Figure 1: System Component Architecture

8.2 Error Handling

1 def handle_generation_error(e: Exception) -> str:
2 logging.error(f"Generation error: {e}")
3 return fallback_response()
4

5 def validate_response(response: str) -> bool:
6 return (
7 len(response.split()) <= MAX_TOKENS and
8 not any(trigger in response
9 for trigger in ROLE_TRIGGERS)

10 )

9 Future Research Directions
9.1 Dynamic Token Adjustment
Investigation into dynamic token limitation:

Tdynamic(t) = Tbase +∆T · f(Rhistory) (11)

9.2 Adaptive Prompt Templates
Development of self-adjusting templates:

Padaptive(t+ 1) = Pbase + α · ∇Q(Rt) (12)
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10 Conclusion
This research demonstrates the effectiveness of systematic prompt engineer-
ing and parameter optimization in controlling small language model behav-
ior. The mathematical framework and implementation details provided offer
a robust foundation for developing similar control systems for other small
language models.
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